Interaction of batrachotoxin with the local anesthetic receptor site in transmembrane segment IVS6 of the voltage-gated sodium channel.
نویسندگان
چکیده
The voltage-gated sodium channel is the site of action of more than six classes of neurotoxins and drugs that alter its function by interaction with distinct, allosterically coupled receptor sites. Batrachotoxin (BTX) is a steroidal alkaloid that binds to neurotoxin receptor site 2 and causes persistent activation. BTX binding is inhibited allosterically by local anesthetics. We have investigated the interaction of BTX with amino acid residues I1760, F1764, and Y1771, which form part of local anesthetic receptor site in transmembrane segment IVS6 of type IIA sodium channels. Alanine substitution for F1764 (mutant F1764A) reduces tritiated BTX-A-20-alpha-benzoate binding affinity, causing a 60-fold increase in Kd. Alanine substitution for I1760, which is adjacent to F1764 in the predicted IVS6 transmembrane alpha helix, causes only a 4-fold increase in Kd. In contrast, mutant Y1771A shows no change in BTX binding affinity. For wild-type and mutant Y1771A, BTX shifted the voltage for half-maximal activation approximately 40 mV in the hyperpolarizing direction and increased the percentage of noninactivating sodium current to approximately 60%. In contrast, these BTX effects were eliminated completely for the F1764A mutant and were reduced substantially for mutant I1760A. Our data suggest that the BTX receptor site shares overlapping but nonidentical molecular determinants with the local anesthetic receptor site in transmembrane segment IVS6 as well as having unique molecular determinants in transmembrane segment IS6, as demonstrated in previous work. Evidently, BTX conforms to a domain-interface allosteric model of ligand binding and action, as previously proposed for calcium agonist and antagonist drugs acting on L-type calcium channels.
منابع مشابه
The batrachotoxin receptor on the voltage-gated sodium channel is guarded by the channel activation gate.
Batrachotoxin (BTX), from South American frogs of the genus Phyllobates, irreversibly activates voltage-gated sodium channels. Previous work demonstrated that a phenylalanine residue approximately halfway through pore-lining transmembrane segment IVS6 is a critical determinant of channel sensitivity to BTX. In this study, we introduced a series of mutations at this site in the Na(v)1.3 sodium c...
متن کاملA molecular basis for the different local anesthetic affinities of resting versus open and inactivated states of the sodium channel.
Voltage-gated sodium channels are inhibited by local anesthetic drugs. This inhibition has complex voltage- and frequency-dependent properties, consistent with a model in which the sodium channel has low affinity for local anesthetics when it is in resting states and higher affinity when it is in open or inactivated states. Two residues, a phenylalanine (F1710) and a tyrosine (Y1717), in transm...
متن کاملMolecular modeling of local anesthetic drug binding by voltage-gated sodium channels.
Voltage-gated sodium (Na+) channels are targets for local anesthetic (LA) drugs that bind in the inner pore of the channel with affinities related to the channel gating states. Our core model of the sodium channel (P loops and S5 and S6 segments from each of the four domains) was closed because it was developed using coordinates from the KcsA channel crystallographic structure. We developed a m...
متن کاملLocal anesthetic block of batrachotoxin-resistant muscle Na+ channels.
Local anesthetics (LAs) are noncompetitive antagonists of batrachotoxin (BTX) in voltage-gated Na+ channels. The putative LA receptor has been delineated within the transmembrane segment S6 in domain IV of voltage-gated Na+ channels, whereas the putative BTX receptor is within segment S6 in domain I. In this study, we created BTX-resistant muscle Na+ channels at segment I-S6 (micro1-N434K, micr...
متن کاملIrreversible block of human heart (hH1) sodium channels by the plant alkaloid lappaconitine.
The roots from Aconitum sp. plants have long been used in Chinese herbal medicine for treating pain and various heart conditions. The principal component of Aconitum remedies is usually aconitine, a site 2 neurotoxin that may induce severe neurological symptoms and cardiovascular collapse. Some Aconitum species also contain lappaconitine, the structure of which is remarkably similar to that of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 95 23 شماره
صفحات -
تاریخ انتشار 1998